Energy landscape for DNA rotation and sliding through a phage portal.

نویسندگان

  • Jeremiah Nummela
  • Ioan Andricioaei
چکیده

Molecular motors involved in the packaging of DNA in tailed viruses are among the strongest known. The mechanism by which the motors operate has long been speculated to involve a coupling between rotation of the portal pore (the gate through which DNA passes upon its packaging or ejection), and translation of DNA. Recent experimental evidence rules out portal rotation with a substantial degree of certainty. We have created an atomistic model for the interaction between DNA and the portal of the bacteriophage SPP1, on the basis of cryo-electron microscopy images and of a recently solved crystal structure. A free energy surface describing the interaction is calculated using molecular dynamics simulations, and found to be inconsistent with a mechanism in which portal rotation drives DNA import. The low-energy pathways on the surface are used to advance a hypothesis on DNA import compatible with all available experiments. Additionally, temperature-dependent kinetic data are used to validate computed barriers to DNA ejection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A P22 scaffold protein mutation increases the robustness of head assembly in the presence of excess portal protein.

Bacteriophage with linear, double-stranded DNA genomes package DNA into preassembled protein shells called procapsids. Located at one vertex in the procapsid is a portal complex composed of a ring of 12 subunits of portal protein. The portal complex serves as a docking site for the DNA packaging enzymes, a conduit for the passage of DNA, and a binding site for the phage tail. An excess of the P...

متن کامل

Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine.

Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. S...

متن کامل

Bacteriophage DNA Packaging RNA Gears in a DNA Transport Machine

main actor in this play is the “portal” or “head-tail conThe question of how the dsDNA bacteriophages get nector,” which is an annular structure made of 12 copies their genomic DNA on the inside of the virus particle, (possibly 13 copies in some cases) of the phage-encoded surrounded by their protein capsid on the outside, has portal protein (Carazo et al., 1986; Dube et al., 1993). been onthe ...

متن کامل

Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding

The recognition of DNA-binding proteins (DBPs) to their specific site often precedes by a search technique in which proteins slide, hop along the DNA contour or perform inter-segment transfer and 3D diffusion to dissociate and re-associate to distant DNA sites. In this study, we demonstrated that the strength and nature of the non-specific electrostatic interactions, which govern the search dyn...

متن کامل

Energy Optimization of Under-actuated Crane model for Time-Variant Load Transferring using Optimized Adaptive Combined Hierarchical Sliding Mode Controller

This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges in designing control systems, which include the unknown parameters or un-modeled dynamics in the systems. Sliding mode controller (SMC) is able to compensate the system in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 2009